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PREFACE

This report is intended to be a brief summary of the most

basic elements of the subject of Power Spectral Analysis of time-

series data. These elements are presented and discussed heuristically

without rigorous mathematical justification. It is hoped that the

material may be used as a practical reference for those gaining their

first exposure to the subject, although key references are given for

further research into specific points. Any errors of omission most

likely reflect the author's limited exposure to the field through

his application of the method to a few particular research problems.
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ABSTRACT

A short presentation is made on the basic elements of Power

Spectral Analysis with emphasis on the Blackman-Tukey method. Short

discussions are included on the topics of pre-whitening, frequency

and spectral windows, and statistical reliability. Examples are

included whenever possible, and a Fortran subroutine for calculating

a power spectrum is presented.
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I. BRIEF BACKGROUND

A. Historical Roots

Power spectral analysis is one small area of the much broader

field of Communications Theory. This broader field is an indispens-

able part of communications engineering and provides the theoretical

foundations for the design and analysis of much of the advanced engi-

neering found in modern communications systems (Lee, 1960). The

theory is basically a statistical theory in which the central idea is

that noise and messages are considered to be random phenomena. Prob-

ability theory is therefore incorporated into the very foundation of

the theory and is an integral part of it.

The basis of the theory finds its roots in statistical mechanics.

The equivalence of time and ensemble averages, first assumed by Gibbs

and later stated more precisely by Maxwell in his ergodic hypothesis,

is the starting point for statistical communications theory. From

this and the quasi-ergodic hypothesis are derived the formal proofs

necessary for the logical development of the subject.

B. Ergodicity and Stationarity

Two conditions necessary for the development of the theory are

imposed on the random ensembles of data which we wish to power spec-

trum analyze. We shall merely state them as being the foundation for

the development of the theory, with proofs and implications to be

found elsewhere.
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(1) Ergodicity. The ergodic theorem may be stated as "in a

stationary ensemble of random functions having a continuous range of

possible values the amplitudes of an ensemble member will come infin-

itely close to every point of the continuous range of possible values

if given an infinite amount of time." This theorem allows the replace-

ment of ensemble averages with time averages, and is the basis for the

formal analysis of communications theory.

(2) Stationarity. If the amplitude probability density of an

ensemble is time independent, the ensemble is said to be stationary.

In practical terms related to power spectral analysis this means that

the power spectrum of a finite data set is time independent.

In addition to the two above conditions, it is assumed that

the random process is Gaussian or nearly Gaussian in character, that

is, the probability distribution of the elements in an ensemble is

Gaussian or nearly so. Blackman and Tukey (1958) show that for an

infinite data set a Gaussian assumption yields exact results, and

rather good approximations otherwise.

C. Notation

With these preliminaries stated, we now give the notation to

be used throughout the rest of this section. Fourier transforms,

correlations (auto- and cross-), and convolutions are used rather

frequently in power spectrum work. Therefore to reduce the complexity

of the equations in the following disoussion a simplified notation

will be adopted as follows:
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1. Fourier Transform

Let f(t) be specified on the interval (-c, o). Then define

the Fourier transform

F(w) - j f(t) e - i t dt

We shall also use the Fourier transform operator 7, e.g.,

Y[f(t)] = F(w)

and inverse Fourier transform operator

r-l [f(t)] =1 i f(t) e i wt dt
J-~

2. Correlation Functions

Let fl(t) and f2(t) be specified on the interval (-C, c). We

then use the following notation:

a. Convolution. Define

12(~) lim 2 T/2T) im T/2 f(t) f(T - t) dt

fl(t) * f2(t)
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where * denotes convolution.

b. Cross Correlation. Define

1(T) li m i -T/ 2 fl(t) f2 (t + T) dt

fl(t) * f2(-t)

c. Autocorrelation. Cross correlation of a function with

itself. Define

1 1 (T) lim T/2 fl(t) f(t + T) dt

= fl(t) * fl(-t)

fl(t) f(t)

the last step being a result of the symmetry of the autocorrelation

operation.

In general, then, small letters will denote functions of time

and capital letters Fourier transforms (functions of frequency) of

the corresponding functions of time. Letters written in script will

be used to denote operators. Additionally, MLP will be used as an
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abbreviation for mean-lagged-product, and FFT for fast-Fourier-

transform. The term "power-spectral-density" (PSD) will also be

used synonymously with "power spectrum".
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II. THE POWER SPECTRUM FOR THE CONTINUOUS CASE

A Fourier series is one set of orthogonal functions that may

be used to expand a well-behaved function on the interval (-a, O).

If we consider a time series f(t), we can represent it by

f(t) = ~1[F(w)]

where

F(w) = 9[f(t)]

The power spectrum of a function is defined as the absolute value

squared of the Fourier transform of the function. If P(w) is the

power spectrum, then

P(w) = lj[f(t)11 2 = IF() 12

But because of the convolution theorem, which states that for two

functions fl and f2'

[fl f2] = Fl F2



By setting fl = f2 we have

[fl * fl] = Fl , Fl (2)

Now fl * fl is the autocorrelation function for fl. The autocorrela-

tion function is always an even function, i.e.,

fl(t) * f(-t)= f 1(t) * fl(t)

so that there are no sine components in its Fourier transform. The

transform is therefore real and

rfl 1 f 1 = 1k1 11

= F1 F1 I= F 12 ()

so that

P(w) = IF(w)1 2 (4)



Therefore

P(w) = m(w)= [oll(t)] (5)

or

IF(w) 12= (U( )  (6)

This equality is known as the Wiener Theorem 
and states that

the power spectrum of a time series 
is equal to

(a) the Fourier transform squared of the function, 
or

(b) the Fourier transform of the autocorrelation 
function.

It may be noted that in (a) the Fourier transform utilizes both

sine and cosine terms, while in (b) the Fourier transform of the

autocorrelation function has only non-zero cosine terms, 
that is,

1 ( W) = I["ll(t)]

J_ - Cp (t) cos wt dt

= ' - S l (t) co; wt dt (7)

/2-TT
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The first method of computing the power spectrum is the most

direct and straightforward way. The fast-Fourier-transform (FFT)

calculation utilizes the definition of the power spectrum directly

to compute the power spectrum. The second method is known as the

mean-lagged-product (MLP) method, and is the one utilized by Blackman

and Tukey (1958) to calculate power spectra.
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III. FINITE DATA SETS

A. Effect of Data Truncation on the Power Spectrum

The definition of the power spectrum was made for infinitely

long, continuous data sets. Practical data analysis, however, re-

quires the use of considerably less data. To determine the effects

on the power spectrum resulting from the truncation of a data set

to finite lengths, consider the function f(t) defined on the inter-

val (-m, m) as shown in Figure 1.

f(t)

Figure 1

If we truncate f(t) by multiplying by a data window g(t) such that

Si, It 1 ! T/2

0, it > T/2

the truncated data set becomes

h(t) = f(t) g(t)



as shown in Figure 2.

h(t) = f(t) g(t)

-T/2 T72

Figure 2

The function h(t) then represents the truncated data set available

from which the power spectrum is to be calculated. The power spectrum

P (ap ) of h(t), representing the apparent power spectrum of f(t), is

then

P (w) = Ij(f _ g)1 2

ap

= IF *G 2

= IF12 *.  G12  , (8)

the last step resulting from the fact that g is presumed to be an

even function. Thus the true power spectrum

Ptrue (w) = IF 2

true
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is modified by convolution with G012 , the Fourier transform squared

of the data window. G is called the frequency window by Blackman and

Tukey (1958). For the data set shown in Figure A-2, G is the sine

function, shown in Figure 5.

si ne (x )  sin x

x

Figure 3

Convolution by the frequency windcw causes a certain degree of

smoothing in the calculated power spectrum and a small amount of

leakage via the side lobes from nearby frequency bands into the fre-

quency band of interest. If the computed power spectrum is relatively

flat, i.e., has a dynamic range of less than 2 or 3 orders of magni-

tude, this smearing or leakage causes little or no problem, for the

amplitude of the largest (first) side lobe of the sine function is

only on the order of several percent of that of the main lobe. If,

however, there are large, well-defined peaks in the power spectrum

such large peaks act as a first approximation delta function. When

convolved with the frequency window they act to reproduce the win-

dow, producing spurious peaks in the power spectrum corresponding to

the side lobes of the frequency window. These spurious peaks may

be mistakenly identified as structural details of the true power
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spectrum when in reality they are merely artifacts created by trunca-

tion of the original data set.

B. Reducing Frequency Window Leakage

Because of the frequencywindow side lobe leakage associated

with data function truncation, one is properly concerned with means

of reducing or minimizing the undesirable effects of such truncation.

Several methods are available for doing this, each depending somewhat

on the particulars of how the power spectrum is computed. Three

commonly used methods will be described in the following sections,

each being intended to illustrate the basic features of and rationale

behind each procedure.

1. Data Tapering

One of the obvious methods of reducing the side lobe leakage

is to choose the data window g(t) such that its Fourier transform

G(w) has either no side lobes at all or side lobes that are small

compared to the main lobe. Examples of the former are:

g(t) = e (Gaussian)

where t is some scale factor. This function has a Fourier transform

equal to a Gaussian; and

sin 2n 6rf t
g(t) = sin f t (sinc function)2 TT Af t
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which has a Fourier transform equal to the box-car function.

However, for the side lobes to be eliminated altogether it is

necessary to extend these data windows to -+ . If they are truncated

at some finite value (as they must be in practice), side lobes are

again introduced, though they will be smaller than the case where

g(t) is the box-car function.

A simpler method is to taper the data set at the ends using

data windows indicated in the following sketches:

g(t)

-T/2 -T4 T/4 T/2 time

or

g(t)

-T/2 -T/3 T/3 T/2 time

Although side lobes are still present in the frequency windows

for each of the above cases, they will be smaller than for the case

where the simple box-car data window was used. The smaller side lobes

are a result of replacing the abrupt discontinuities of the original

box-car data window with more gently sloping functions.
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Data tapering is most often performed when the FFT method is

used to compute the power spectrum. For a more complete discussion

of this topic see Enochson and Otnes (1968).

2. Tapering the Autocorrelation Function

If the MLP method of computing the PSD is used the problem of

side lobe leakage is not as simple as it was in the case of computing

the PSD directly from its definition. An additional factor for con-

sideration enters when not only the original data set must be trun-

cated, but so also the autocorrelation function. When an MLP cal-

culation is made it becomes advisable, for reasons to be discussed

in connection with statistical reliability, to truncate the auto-

correlation function at a maximum lag of not more than 10-20% of

the length of the data set (Blackman and Tukey, 1958). In order to

see what effect this second truncation has, consider the original

data set f(t) properly truncated with a data window g(t). The auto-

correlation function cll(T) then becomes

o l(T) = Ef(t) g(t) [f(t) • g(t)

or

:,, = (f " g ) * (f g)



16

Now cl represents the entire autocorrelation 
function avail-

able after f is truncated by g. To truncate p11 at a lag of 10--20 o

of the length of the data 
set therefore involves specifying 

another

function q(7), called the lag window, by which 11 is multiplied

in order to effect truncation. Let 'Pl represent the truncated

autocorrelation function. Then

S= CP q = [(f • g) * (f - g)] q

The apparent power spectrum is 
the Fourier transform of the

truncated autocorrelation function 
so that

ap (w) (f g)* (f g)] q)

= [(f • g) * (f • g)] * 9(a)

= [C(f . g) • (f • g)] * 5(q)

= [(F * G) (F * G)] * (9)

where Q (the so-called spectral window) 
is the Fourier transform of

q, the lag window. Now g and q are normally chosen to be even

iunctions, so that
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Pap() = (IF12 * IGI2) Q

= [Pt (w) * IG(W) 2 ] * Q (10)

We see that, as in section III-A, the true power spectrum has been

altered by convolution with IG(w) 2, and additionally by convolution

with Q. If q(T) was the box-car function, then Q(w) is the familiar

sinc function, not squared. It is this last convolution that can

lead to negative values in the apparent power spectrum even though

negative values are theoretically impossible in a power spectrum.

They are, in this case, merely an artifact due to truncation.

To remove the possibility of negative values for the power

spectral estimates, as well as making the side lobes of the window

Q smaller, it is once again advisable to tailor the shape of

the lag window q(T). It is to be tailored in such a way that the

side lobes that remain are small in comparison to the main lobe, and

damp out quickly with increasing distance from the main lobe. Two

lag windows that have been found to do this effectively are:

(1) q (T) =1 1+ cos , -T T T
1 2 T Tm m

where T is the greatest lag used in the autocorrelation function.mn
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The use of this window is called "hanning". A second, more commonly

used lag window is

(2) q (T) = 0.54 + 0.46 cos , - !T m
m

Use of this window is called "hamming".

The two functions ql and q2 , along with their associated

transforms Q1 and Q2 are shown in Figure 4.

SPECTRAL WINDOWS LAG WINDOWS
1.0 1.2

0.8 __ -0.8 -

\ Q, /Tm
0.6 1 0.4L

Q,41.rO8Tm)' I
0.4 _ j 1

S-1.2 -0.8 -0.4 0.4 0.8 1.2
CHANGE IN 7/Tm

VERTICAL SCALE PEAK0.2 2%' C- PEAK .... 0.021- -- - 0.02%. *

2% OF PEAK

_...T_ z ___i ..- 0.02

-0.04
0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

fTm

Figure 4

(After Blackman and Tukey, 1958.)
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Although in principle q(7) would normally be applied to the

autocorrelation function prior to transforming, the interchange-

ability of the integrations associated with the transform and the

convolution makes it possible to convolve with Q(w) after the

transform has been completed. This has particular advantages when

the data are in digital form. In the case of hamming or hanning,

the convolution will take the form of a 3-point smoothing formula

easily applied to the power spectrum estimates calculated by trans-

forming the autocorrelation function. More will be said about this

form of smoothing in section V when a specific power spectrum example

is given.

It might be added that when the MLP method for computing PSD's

is used it is usually unnecessary to be overly concerned about the

effects of the convolution of jQ(~,)1 2 with P true() [see Eq. (10)].

Since G(w) is squared, whereas Q(m) is not, the side lobes of IG(,) 2

will be unimportant compared to those of Q(w). The half-width of the

major lobe of G(w) is also small (- 1 order of magnitude smaller)

compared to that of Q(,)) since the original data set is - 10 times

longer than q(T) Therefore the effects of Q will far outweigh those

of G, and it is those effects that hamming or hanning are designed

to offset. It is accordingly not necessary to taper the original data

set (or pre-whiten; see next section) except in cases of extremely

discontinuous spectra, or when extreme care need be taken to assure

the validity of the results.
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3. Pre-whitening

As was mentioned previously, if there are large, well-defined

peaks in the power spectrum such peaks can produce spurious detail

in the power spectrum due to frequency or spectral window side lobe

leakage. It is for this reason that methods were sought to reduce

the side lobes. An alternate method that can be used on occasion is

known as "pre-whitening". This procedure involves flattening the

power spectrum prior to calculation by passing the data through a

filter with a known power transfer function in order to eliminate

large peaks and discontinuities. With the peaks and gross discontin-

uities thus removed, the effective convolution of IF 2 with IGI2 to

yield P p() will not act to reproduce the side lobes of IG 2 as

would have been the case had the peaks not been removed. Once the

power spectrum is computed the inverse of the pre-whitening, the

so-called "post-darkening", is applied to the PSD estimates to

complete the calculation.

In order for pre-whitening to be used effectively some prior

knowledge of the expected shape of the spectrum to be flattened must

be available. This is necessary in order to design a filter with

the proper power transfer function. An example of how pre-whitening

may be used is the following: Suppose we have a data set for which

we know approximately the shape of the power spectrum, and suppose it

has a very large low (zero) frequency component, as in Figure 5.
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2--

log P(w)

1--

0
w

Figure 5

If the power spectrum is computed directly from the data with-

out some measures being taken to compensate for possible side lobe

leakage, the apparent power spectrum P (w) would look something likeap

Figure 6.

:3-

2

log P (w)
ap

1-

0
W

Figure 6
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The small scale structure may well be that solely due to side

lobe leakage, though in the case where confidence in the results is

low this structure can be masked by statistical noise.

Suppose now that the original data f(t) is pre-whitened by

convolution with a smoothing function s(t). Then the data set h(t)

available from which the PSD calculation is made will be

h(t) = f(t) * s(t)

or more simply,

h=f*s .

Then

P (w) = iY(h) 2 = (f . s) 2

-IF S12

or

P (m) = 1F2 1 IS2
ap

true () SI 2 (11)
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since s(t) is an even function.

Thus, if the original data set is convolved with a smoothing

function s(t), the true PSD is modified by the direct product of the

square of the transform of s(t). IS1 2 is called the power transfer

function. To compensate for this at the end of the calculation we mul-

tiply by the inverse of IS(w) 2 to restore the proper shape to P(w).

In the above example suppose we choose a smoothing function

+ cos 2- to < 27

s(t) =

0 It - to I 2AT

where AT is some scale factor. This smoothing function may be passed

over the data as many times as one desires, more smoothing being

accomplished with each pass and more of the high frequency components

being suppressed.

If the data is in digital form the smoothing function above

takes the form such that if f'(t) is the smoothed data,

f'(t) = : f.(t) + [f_ (t) + f i(t)I (12)

Holloway (1958) showed that for n successive passes of the above

elementary filter function through the data, the power transfer func-

tion IS 12 becomes
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s12 = cos 2 (nf At) ,

where At is the data sample spacing.

The above filter function may be used to effectively remove

the low-frequency component in the present example. If the smoothed

data (low-pass filtered) is subtracted from the original unsmoothed

data, the difference will represent the original data filtered by a

high-pass filter with a power transfer function equal to the comple-

ment of the original transfer function. Suppose the original data

is filtered using this method. The smoothing function applied to the

original data set f(t) will have a power transfer function similar to

Figure 7.

1- - - - - - - - - - - - - - - -.

0.5 t low-pass filter
function

Figure 7

When this smoothed data is subtracted from the original f(t),

the resultant power transfer function will be the complement of the

function shown above.
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high-pass filter function
0.5-- (complement of low-pass

filter function of Fig. 7)

Figure 8

Applied to our example of data with a large low-frequency

component, this will effectively flatten the curve to minimize the

possibility of side lobe leakage. After the PSD has been computed

post-darkening is achieved by multiplying by the inverse of the func-

tion shown in Figure 8 to complete the calculation.

For a more complete discussion of the topic of pre-whitening

and digital filtering techniques see Blackman and Tukey (1958) and

Enochson and Otnes (1968).
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IV. DIGITIZED DATA

The discussion of power spectra has been general up to this

point, with only an occasional reference to specifics. Since we are

here primarily interested in data that appears in discrete, digital

form, it is appropriate to specialize to that case. We shall from

this point forward consider only the power spectra of data consisting

of discrete, equi-spaced samples. The discrete forms of the general

equations of section II will be given for both the MLP and FFT cal-

culations. The statistical reliability of PSD estimates will be

discussed briefly for each of the two methods, and several considera-

tions helpful for planning will be mentioned. The averaging of

several power spectra is also mentioned.

A. Discrete Forms of Relevant Equations

1. MLP Method

The steps required for calculation of a power spectrum using

the MLP method may be summarized from the above discussion to be the

following:

(1) Pre-whitening. If the power spectrum is known to contain

large peaks or discontinuities, the raw data should be pre-whitened

by use of appropriate digital filters (high-pass, low-pass, band-pass,

or combinations of these). The necessity for this procedure is
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somewhat open to interpretation according to one's perception of

what constitutes a large peak or discontinuity. My own limited

experience over several years is that for a power spectrum with a

dynamic range of > 2-3 orders of magnitude, pre-whitening to

flatten the spectrum prior to its computation is advisable. The

example given in section III of a method of constructing a high-

pass filter was used successfully by the author (M.S. thesis, 1973).

Since, however, the actual method used to pre-whiten will depend

on the details of the various power spectra encountered in practice,

the reader is referred to chapter 3 of Enochson and Otnes (1968)

for a thorough discussion of recursive, non-recursive, and second-

and higher-order filters and their application to time series.

(2) Normalizing the Data. Although not mentioned in the

previous sections, it is advisable in practice to normalize the data

to zero mean and unit standard deviation before calculation of the

PSD. Since the calculation of the mean-lagged-products (autocorrela-

tion function) involves the sum of many products, it is easy to termi-

nate a computer calculation of a PSD prematurely due to overflow.

Subtracting the mean from the data removes only the zero-frequency

cosine term from the PSD, and can be included in the calculation after

the remaining following steps are completed. Dividing the (pre-

whitened) zero-mean data set by 0 reduces the data to unit standard

deviation. Correct absolute units can be restored to the final com-

puted PSD if desired by multiplying by T
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(3) Calculation of the autocorrelation function. If ep

denotes the j'th value of the autocorrelation function, the discrete

form for the autocorrelation function of the data set f(t) with data

sample spacing AT containing n discrete values f. is
1

- I f. f. , j = 0, i, 2, ... m , (13)
j n -j L 1 i +ji=0

where m is the maximum number of lags in the autocorrelation function.

As mentioned in section II, m will generally be limited to 10--20%

that of n.

(4) Fourier transform of the autocorrelation function. Since

the autocorrelation function is an even function, the discrete form

for the Fourier transform becomes the discrete finite cosine series.

Applying this to the sequence iP, cl, ... , m we obtain as raw

estimates for the PSD

P.= AT + 2 co. cos ij + om cos i (14)
j=l m

i = 0, i, ... m

where AT is the sample spacing.
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(5) Smoothing the raw estimates. The raw estimates calculated

in step (4) correspond to Eq. (10)

Pap(') = [Ptre(w) * IG(w)l *

with a box-car lag window leading to a sinc function spectral window.

What remains is convolution with a suitably tailored spectral window

Q with small side lobes to complete the calculation. A commonly

used window is the hamming window, the digital form of which becomes

P. = 0.54 P. + 0.23 (Pi+l + P i-) (15)

(6) Post-darkening. If the raw data were pre-whitened in

step (1), the last step in the calculation of the PSD will be to

restore the true shape of the power spectrum by post-darkening. This

process involves multiplying the smoothed estimates of step (5) by

the inverse of the pre-whitening filter power transfer function.

The frequency resolution Af of the resultant spectrum will be

1
Af-

2m AT

where

m = the maximum number of lags in the autocorrelation function

and

AT = data set sample period.
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The maximum frequency of the computed PSD will be

f = mA= 1 (16)
max 2A7

in accordance with the sampling theorem.

2. FFT Method

The fast-Fourier-transform technique of computing the PSD of

a time series was a major improvement over the MLP method in terms of

the actual computer time taken for the calculation. If N is the num-

ber of points in a time series, the total computer time needed for

an MLP calculation is roughly proportional to N2 , where for the FFT

method it goes approximately as N(log N). The advantages of utilizing

the FFT method whenever many points are being power spectrum analyzed

therefore lie on the side of efficiency rather than any fundamental

superiority of the method over that of the MLP. As a technique of

computing PSD's, it is quickly supplanting the MLP method and is

therefore worth studying. An extensive discussion of the FFT com-.

puted one-dimensional PSD by Brault and White (1971) provides a

thorough introduction to FFT methods and their application to astro-

nomical problems.

Although no attempt will be made here to outline in detail the

steps required for FFT calculation of a PSD, the basic steps are as

follows:
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(1) Pre-whitening. The necessity for pre-whitening the data

is less strong when the FFT method is used than it is for the MLP

method. The reason for this lies in the fact that the FFT calculated

PSD takes the form

Pap(W) Ptrue * IG(w) 12

whereas the MLP method yielded

ap ( u ) = [Ptrue * IG(w)12] Q(w)

The FFT form does not involve a convolution with Q, so that

one need only be concerned with the shape of G(w). If g(t) is

properly specified the side lobes of IG(w,)12 can be kept small enough

so that very little leakage is present [see step (3) below]. Only

in the case where there are exceptionally large peaks or discontin-

uities in the power spectrum should pre-whitening be necessary. In

general, it may be said that in most cases this step will not be

necessary at all.

(2) Normalizing the data. It is advisable to normalize the

data to zero-mean and unit standard deviation, for the same reasons

as given for the MLP method above.

(3) Data window correction. As discussed in section III-A,

truncation of a data set can produce spurious detail in the computed

PSD. It is therefore necessary to choose a data window g(t) by which
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to multiply the time series such that the frequencywindow G(w) will

have small side lobes. A window currently in common use is the ten-

percent cosine bell, the application of which is called coswinding.

For the generalized formula for this data window see Brault and White

(1971, Equation 13).

(4) Appending zeros to the data. The most efficient versions

of the FFT require the data to consist of a number of points equal

to a power of two, although some generalized versions will work with

an arbitrary number of points. If a version is used requiring some

specific number of points, the original normalized data set to be

transformed must have zeros appended to it to bring the total points

up to the specified number.

(5) Transforming the data. The normalized data set f. is
1

transformed using the forward discrete Fourier series transform to

yield Fourier coefficients

n -1

a. + ib = n o  exp i j1 = 0, 1, ... , n -

(17)

where

At = data sample spacing,

no = number of data points in the normalized data set, and

i = /-I

(6) Computing the raw spectrum. The raw PSD is just the ab-

solute value squared of the Fourier transform, adjusted to compensate
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for the appendage of zeros to the original data set.

2
n

P. (a + b) (18)
1 n ii

where n = number of points in the original data set.

(7) Smoothing the raw estimates. The raw estimates obtained

in step (6), although theoretically correct, may be statistically

unreliable. It is possible to increase the statistical reliability by

smoothing (convolving) the estimates with a suitable smoothing func-

tion. For an excellent discussion on the subject of smoothing raw FFT

estimates see Edmonds and Webb (1972).

The frequency resolution (PSD estimate spacing) of the FFT

calculated PSD will be

Af = At (19)

For specifics on the programming of the FFT algorithm, including

Fortran indexing peculiarities, one should consult 'Special Issue

on FFT and Its Applications to Digital Filtering and Spectral Analysis',

IEEE Trans. AU-15, No. 2 (1967). Another special issue on the same

topic, IEEE Trans. AU-17, No. 2 (1969), gives an extensive biblio-

graphy.



34

B. The Statistical Reliability of the PSD Estimates

1. Confidence Limit

The calculation of the PSD from a finite number of discrete

data points can be expe ted to have associate' with it a set of confi-

dence limits reflectin the presumed statistictil nature of the ori-

ginal time series. 1 theory, if a PSD calculation could be made from

an infinite number o data points, one would have absolute confidence

in the results. In practice one must settle for a. f inite number of

points from which t. make the dalculation. Each poin; in the resul-

taht power spectrumn will have a set of "confidence limits" assignedto it reflecting the confidence (un
to it reflecting the confidence (in a statistical sense)\ that the re-

sulting power' spectrum is not duel solely to randomly distr.buted

data points.

The statistical accuracy of thz computed PSD is estima.ted in

terms of "equivalent degrees of freedom", from which the conf:tdence

limits ale calculated. The degrees oT freedom may be thought of as

represen iAng the number of estimates of power in the frequency inter-

val Af, the frequency resolution of the computed PSD. A measure of

the /robability that an estimate falls within an upper and lower
b und, the ratio of which is designat(E the confidence factor f is

given by

f = 10b/(l!-1) =e 2.5 b

_ 1 b/(lp) 2.3 (20)Sc / exp
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where

fc = confidence factor for a given confidence,

k = degrees of freedom, and

b = factor depending on the desired confidence, given as

follows:

confidence

50% 80% 90% 96% 98%

b 8 16 20 25 29

This is an approximation, but for k " 4 is very close to more exact

calculations based upon chi-square tables (Edmonds, 1966).

The confidence factor fe may be used as error bars for the

computed PSD, being positioned on each data point in such a way

that the point falls on the geometric mean of the upper and lower

limits of fc . Another way of stating this is that the upper limit

for the confidence limits is equal to the PSD estimate times the

square root of fe; the lower limit equals the estimate divided by the

square root of fc. If the PSD is plotted on a semi-log scale the

confidence limits will be centered on each point.

A plot of fe as a function of degrees of freedom k for several

different confidences is shown in Figure 9. The ordinate expresses

fc in Db; to determine fe one goes across to the straight line labeled

"factor", then reads fc off the abscissa. As an example, for k = 30
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the 90%o confidence factor expressed in Db is seen to be 3.8, for

which f s 2.3.
c

The next two sections will consider formulas for determining

k for each of the two methods of computing PSDs.

2. k for the MLP Calculation

The number of degrees of freedom k for the one-dimensional MLP

calculated PSD is given by (Blackman and Tukey, 1958)

where

N = the number of data points in the data set, and

M = the maximum number of lags in the autocorrelation function

= the number of points in the computed PSD.

As can be seen from this formula, k is nearly proportional to

the ratio N/M. In order to achieve maximum confidence in the PSD

estimates it is necessary that k be made as large as possible; this

will insure that the confidence factor fe [Eq. (20)] will be small.

N is usually some fixed number of points, so M is therefore chosen to

be small relative to N. It is for this reason that M is normally

chosen to be not more than 10--20% of N.
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5. k for the FFT Calculation

The number of degrees of freedom k for the one-dimensional

FFT calculated PSD is given by (Tukey, 1967)

k= 2pN-NT

where

N = the number of points in the original data set,

NT = the number of points tapered by the data window g(t),

N = the total number of data points after zeros have been

appended, and

p = the effective number of points involved in smoothing of

the raw PSD estimates.

Although the MLP and FFT formulas for k appear to be super-

ficially different, it is not difficult to show that the confidence

limits calculated from a given k are essentially equivalent for the

two cases, as would be expected.

C. Planning Considerations

In the previous sections the basis of a PSD calculation was

discussed with appropriate equations given. In a practical applica-

tion some thought must be given to the problem of choosing data sample

spacing, frequency resolution, and the frequency range over which the

power spectrum is to be calculated. This section will deal only with
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considerations to be made in performing an MLP calculation; similar

considerations will apply to an FFT calculation.

1. Choosing AT and f
max

The raw data from which the PSD is to be calculated is assumed

to consist of discrete, equi-spaced samples of period AT. Then if

f denotes the maximum frequency for which PSD estimates are ob-max

tained we have from the sampling theorem

f 1
max 2AT

f is clearly independent of the total number of data points andmax

the maximum lag M of the autocorrelation function. It depends solely

on the sample spacing. If in an analysis one wishes to examine the

PSD up through a specific frequency, this formula shows what the

corresponding minimum sampling frequency must be. Likewise, if it is

desired only to compute the PSD for a limited frequency range, by

choosing the correct AT the resulting PSD will have a frequency range

of exactly the right size. This fact is helpful in minimizing the

number of data points reauired in a calculation. For example, if one

were interested in examining the PSD of a set of data only in the fre-

quency range 0-5 Hz, the sampling period AT would be 0.1 sec. Samp-

ling more often than this would increase f beyond the range of
max

interest, increase the total number of data points, and thus the

machine calculation time, and generally would not add any information.
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If the sampled data already exists for which the power spectrum

is to be calculated, it is possible to adjust AT to near the desired

value by (a) decimation, using only every p'th point of the original

data or (b) averaging, averaging by groups of p points. The former

method increases AT by a factor of p and maintains the standard devia-

tion (for random or near-random data) about the mean. The latter

increases AT by a factor of p but decreases the standard deviation

about the mean by a factor of /j. For further discussion on these

methods consult Enochson and Otnes (1968).

2. Choosing M and Af

The frequency resolution Af of the calculated PSD is

Af = I
2M

where M is the maximum lag in the autocorrelation function. This

formula may be used for either determining in advance of a calculation

what the frequency resolution will be, or for determining M for a

given desired Af. As discussed in section B, M should be small

relative to the total amount of data. This fact must also be taken

into account when planning a PSD calculation.

As an example of how the foregoing considerations may be used,

suppose we wish to calculate the PSD of a data set for the frequency
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range 0--5 Hz. Suppose further that we wish the frequency resolution

Af to be 0.2 Hz, providing a total of 26 points (including the end-

points) in the power spectrum, and that the 90% confidence factor is

to be < 2.0. Then

1
AT = 257 = 0.1 sec

M = 2.5 sec
2(0.2)

= the maximum lag of 26 data points.

From Figure 9 we find that for the desired confidence we must

have k 45, from which

T Mk 2.5(45) 61 sec
2 2

for which

N = 610 data points.

As a second example suppose a data set already exists consist-

ing of 500 points with sample spacing 1 sec. If the autocorrelation

function is truncated at 10%o the length of the data set, we calculate

f ma' Af, k, and fc (90%) to be:
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f - - 0.5 Hzmax 2AT

1 1
Af = M - = 0.01 Hz

k = 2 2 50019. , and

f (9 = 2.9

From the above simple examples it is seen that M, N, AT, fc'

Af, and f are to a degree interrelated. Therefore one must be some-max

what judicious in their specification in order to achieve the maximum

amount of usable information in a PSD calculation. For example, one

can achieve a very high degree of statistical reliability by making.

M very small. However this would be at the expense of the frequency

resolution. In general, for a given data set there is a trade-off

between statistical reliability and frequency resolution. This prob-

lem can be surmounted by simply increasing N (using more data) but

then the computing time increases, and so on.

D. Averaging Power Spectra

It is occasionally desired to study the average characteristics

of power spectra over long periods of time. Although it is possible

to compute an average power spectrum over a long data set, it is



42

sometimes more efficient to break it up into shorter sets, compute the

PSD for each individual data set, then average the results. This pro-

cedure is also necessary if, for example, several short, non-contiguous

data sets of varying lengths exist for which one wishes to extract an

average power spectrum. The validity of the averaged results will

depend on the stationarity of the data; for data which is non-

stationary the results will be influenced by the lengths and number of

data sets used in the calculation. [For a short discussion on this

point see Sentman (1973).] The following sections apply to MLP cal-

culated PSD's, though similar considerations would apply to FFT cal-

culated PSD's.

1. Averaged Power Spectra from Data Sets of Equal Lengths

If it is assumed that the frequency resolution Af is identical

for each PSD comprising the average, the statistical reliability of

each is the same. Then

- 1 E

j=l

where

P. = i'th point in the averaged power spectrum,1

P.. = i'th point in the j'th power spectrum,

N = the number of spectra being averaged, and
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a. = standard deviation about the mean of data in the original

j'th (pre-whitened) data set. If the data in the j'th

data set were divided by cj after the mean was removed

prior to calculation of the power spectrum, this weight

is necessary to restore the proper relative units to

P... If the data were not normalized this weight is
1J

equal to one.

2. Averaged Power Spectra from Data Sets of Different Lengths

If the individual spectra comprising the average are computed

from data sets of different lengths, the statistical reliability of

each PSD is different. If Af is identical for each individual PSD,

the expression for averaging becomes

1 ,2 - 2.3 b pP N . exp P..
S 'j=1 20/k 1 j

where

k. = degrees of freedom in the j'th computed power spectrum,

and

b = 8, for 50% confidence limits.

The exponential weighting factor must be included to properly

weigh individual spectra according to its probable error. The uncer-

tainty in the spectra is taken to be the probable error, or the

square root of the 50% confidence factor defined in Eq. (20).
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3. Statistical Reliability of Averaged Spectra

Confidence limits for the averaged spectrum are computed by

assuming that its equivalent degrees of freedom k equal the sum of

the degrees of freedom in the individual spectra comprising the aver-

age.

N
k= Z k.

j=l

It can easily be shown that if the statistical "noise" present in each

of the individual spectra is treated as a random fluctuation about

the true power spectrum, the above expression for calculating k results

in confidence limits that shrink at exactly the same rate as the

"noise"when more and more spectra are averaged.
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V. AN EXAMPLE OF A POWER SPECTRUM CALCULATION

As an example of how the information contained in the previous

sections may be applied, the following will serve to illustrate the

basic features of an MLP calculated power spectrum. The example

given is from a calculation made in conjunction with the study of

oscillatory phenomena in the solar atmosphere (Sentman, 1973).

The raw data consisted of antenna temperature 5 sec data

samples of solar microwave emission recorded on the North Liberty

Radio Observatory 2-cm radiometer. Individual data sets ranged in

length from 4-12 h. The power spectrum of each data set was to be

calculated, and the average of all the individual spectra computed

to obtain an average power spectrum for all the data sets.

The frequency range of interest to this study was 0-15 mHz

(1 mHz = 10 3 Hz), or f = 15 mHz. A sampling time AT ofmax

1/2(15 X 10 -3 ) = 3.3 sec was thus indicated. The nearest that one

could come to this figure using 5 sec data samples was either 30 sec

or 35 sec, corresponding to averaging the 5 sec samples by groups of

6 or 7, respectively. Averaging by groups of 6 was chosen, yielding

an effective sampling time AT = 30 sec and a maximum frequency

fmax = 16.7 mHz. A typical data set with 30 sec resolution (effective

sampling time) is shown in Figure 10.
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It was known in advance of the calculation (by trial runs on

several data sets) that the power spectra all contained a very large

peak at near zero frequencies, thus indicating a need for

pre-whitening. High-pass smoothing was achieved by means of the

method described in section III-B by making 10 passes through the

data with the smoothing function described by Eq. (12). The result-

ing low- and high-pass power transfer functions are shown in Figure

11. A maximum lag of 25 min (= 50 lags x 30 sec) was chosen to

balance frequency resolution against statistical reliability. This

resulted in a frequency resolution Af = 0.33 mHz. The degrees of

freedom k therefore ranged from 18.5 (4 h data set) to 56.9 (12 h

data set), providing the high degree of statistical reliability

necessary for the study (very low amplitude fluctuations were being

sought).

The data normalization and power spectra calculations were

achieved using the subroutine listed in Appendix I. After the power

spectrum was calculated it was post-darkened to compensate for the

pre-whitening by multiplying with the inverse of the high-pass power

transfer function shown in Figure 11. An example of the resulting

spectra with confidence limits, normalized to a value of 10 in the

range of 4--5 mHz for display purposes, is shown in Figure 12 for

the frequency range 0--15 mHz. All calculations were carried out on

a Univac 418 computer.
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FIGURE CAPTIONS

Figure 9 The confidence factor as a function of degrees of freedom

k (see page 35).

Figure 10 Typical plot of antenna temperature versus time with 30

sec time resolution. Data records used to compute power

spectra were chosen to exclude the end pieces of each data

day.

Figure 11 Low-pass and high-pass filter functions R(f) and R'(f)

used to pre-whiten the data prior to calculation of the

power spectra. Post-darkening is achieved by multiplying

the resultant spectra by 1/R'(f).

Figure 12 Power spectrum of the single record containing a statis-

tically significant peak near 4 mHz.



7 A-G73-228

6 98%

5 96%

90/

4 80%

3

2 - FACTOR

I I I l I I i i I I ' ,I I .i I I I I l
10 100 1000

K-DEGREES OF FREEDOM

Figure 9



UNIVERS I TY OF IOWR 2-CM RRDIOMETER
10'

cr

a:

L 10'

z

C
Z

10'
1.2 13 1i 15 16 17 18" 19 20 21 22 23 24

DEC. DY 344 9 DEC 68 UT

Figure 10



A-G73-224
1.0 I I

HI PASS
FILTER FUNCTION

.8
R(f) R'(f)

.6

.4
0

.2 _LOW PASS
FILTER FUNCTION

5 10 15

FREQUENCY, mHz

Figure 11



51

A-G73-227

1000

-- DEC. DAY 136, 1969
,)

z
w

0100

I 80 PERCENT

w CONFIDENCE LIMITS -
' ) K = 36.0

a:

0
10

w
N

--

0
z I

O 5 10 15

FREQUENCY, MILLI-Hz

Figure 12



52

APPENDIX I

A FORTRAN SUBROUTINE FOR CALCULATING POWER SPECTRA

The following is an example of a subroutine for an MLP calcu-

lation of a power spectrum. Pre-whitening is assumed to have been

completed prior to entry into the subroutine, and post-darkening and

conversion to absolute units from normalized units is assumed to

take place after return.

The program was written from the definitions for the auto-

correlation function and discrete cosine transform. However, to

facilitate the transform operation a cosine table is constructed and

a table look-up procedure is incorporated into the program rather

than requiring a double precision cosine to be computed each time

it is needed. The table is constructed in the first call of the

subroutine and each time the autocorrelation function maximum lag is

changed; succeeding calls use the table already constructed.

As shown below, the program will accommodate a maximum of 1500

data points with an autocorrelation function maximum lag of 500.

These figures may be raised or lowered as desired by dimensioning the

relevant arrays accordingly.
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A. Subroutine Arguments

Input variables:

X - Double precision array containing data to be power

spectrum analyzed

N - Integer specifying the number of data points in X (may

be smaller than the dimension size of X)

MA - Integer specifying the maximum number of lags for the

autocorrelation function (may be smaller than the dimen-

sion size of R)

Output variables:

U - Single precision array containing M + 1 hamming smoothed

normalized power spectral estimates

R - Double precision array containing M + 1 values of the

normalized autocorrelation coefficients

XBAR - Double precision variable for the mean of the input

data set

SX - Double precision variable for the standard deviation

of the input data set. This variable is necessary if

absolute units are to be calculated for the power spec-

trum (not done here)
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B. Subroutine

SUBROUTINE SPECTR(X,N,MA,U,R,XBAR,SX)
DOUBLE PRECISION X,AL,CS,XBAR,SX,R
DOUBLE PRECISION FAC,ARG,DCOS,DBLE,DSQRT,PI,AEND
DIMENSION X(1500),U(501),R(501),CS(501),AL(501)
DATA PI/.5141592654D+O1/,M/O/

C
C NORMALIZE DATA TO ZERO MEAN AND UNIT STANDARD DEVIATION

XBAR=O. 0
DO 3 I=1,N

S XBAR=XBAR+X(I)
XBAR=XBAR/DBLE(FLOAT(N))
SX=O.OD+00
DO 6 I=1,N
X(I)=X(I)-XBAR

6 SX=SX+X(I)*X(I)
SX=DSQRT(SX/DBLE (FLOAT (N)))
DO 7 I=1,N

7 X(I)=X(I)/SX
C
C BUILD COSINE TABLE .CS. FOR INTERVAL .0. to .PI.

IF(MA.EQ.M) GO TO 200
M=MA
MP=M+1
AVERG=DBLE(FLOAT(M))
DO 2 I=1,MP
ARG=DBLE (FLOAT (I-1))
ARG= (PI*ARG)/AVERG

2 CS(I)=DCOS(ARG)
200 CONTINUE

C
C CALCULATE AUTOCORRELATION COEFFICIENTS

DO 30 J=1,MP
R(J)=O.OD+00
JP=J-1
IEND=N-JP
AEND=DBLE (FLOAT(IEND))
DO 25 I=1,IEND
INDX=I+JP

25 R(J)=R(J)+X(I)*X(INDX)
50 R(J)=R(J)/AEND

C
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C CALCULATE POWER SPECTRUM

C (FOURIER TRANSFORM A/C FUNCTION .R.)
MX2=M*2
MPX2--MX2+2
MM=M-1
DO 40 J=1,MP
AL(J)=O. OD+OO
JP=J-1
DO 35 K=1,MM

C
C CALCULATE INDEX .INDCS. FOR RETRIEVING
C PROPER COSINE FROM TABLE

INDCS=MOD ( (JP*K),MX2)+
IF(INDCS.GT.MP) INDCS-MPX2-INDCS

35 AL(J)=AL(J)+2.0D+00*R(K+1)*CS(INDCS)
FAC=1. OD+OO
IF(MOD(JP,2) .EQ.1) FAC=-1.OD+OO

40 AL(J)-=AL(J)+R(1)+R(MP)*FAC
C
C APPLY HAMMING SMOOTHING FUNCTION TO ESTIMATES .AL.
C TO YIELD SMOOTHED POWER SPECTRUM ESTIMATES .U.

U(I)=SNGL(0.54D+00*AL(1)+o.46D+OO*AL(2))
U(MP)=SNGL(0.54D+00*AL(MP)+O.46D+00*AL(M))
DO 50 I=2,M

50 U(I)=SNGL(0.54D+OO*AL(I)+0.23D+00* (AL(I-1)+AL(I+1)))
RETURN
END
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